INA219 ESP32 Micropython
INA219
ESP32 > INA219
3V3 > VCC
GND > GND
D4 > SDA
D5 > SCL
main.py
from machine import Pin, I2C
import ina219
import time
from led_driver import print_like_console , print_multiline_console
# Initialize I2C communication
i2c = I2C(0, scl=Pin(5), sda=Pin(4))
# Create the sensor object
sensor = ina219.INA219(i2c)
# Set the calibration for your needs (choose one)
sensor.set_calibration_16V_400mA() # For lower current measurements
# OR
# sensor.set_calibration_32V_2A() # For higher current measurements
while True:
# Read and print values - using the CORRECT attribute names
print("Current (mA):", sensor.current)
print("Shunt Voltage (V):", sensor.shunt_voltage) # Voltage across shunt resistor
print("Bus Voltage (V):", sensor.bus_voltage) # Voltage on V- pin (load side)
# If you need the total supply voltage (V+), calculate it:
supply_voltage = sensor.bus_voltage + sensor.shunt_voltage
print("Supply Voltage (V+):", supply_voltage)
print("---")
lines = [f'Curr (mA): {sensor.current}' ,
f'Shunt (V): {sensor.shunt_voltage}' ,
f'Bus (V): {sensor.bus_voltage}',
f"Supply (V+): {supply_voltage}" ]
print_multiline_console(lines, 0.05)
time.sleep(2)
ina219.py
# The MIT License (MIT)
#
# Copyright (c) 2017 Dean Miller for Adafruit Industries
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""
`adafruit_ina219`
====================================================
CircuitPython/MicroPython driver for the INA219 current sensor.
* Author(s): Dean Miller
"""
from machine import I2C
from micropython import const
# from adafruit_bus_device.i2c_device import I2CDevice
__version__ = "0.0.0-auto.0"
__repo__ = "https://github.com/robert-hh/INA219.git"
# Bits
# pylint: disable=bad-whitespace
_READ = const(0x01)
# Config Register (R/W)
_REG_CONFIG = const(0x00)
_CONFIG_RESET = const(0x8000) # Reset Bit
_CONFIG_BVOLTAGERANGE_MASK = const(0x2000) # Bus Voltage Range Mask
_CONFIG_BVOLTAGERANGE_16V = const(0x0000) # 0-16V Range
_CONFIG_BVOLTAGERANGE_32V = const(0x2000) # 0-32V Range
_CONFIG_GAIN_MASK = const(0x1800) # Gain Mask
_CONFIG_GAIN_1_40MV = const(0x0000) # Gain 1, 40mV Range
_CONFIG_GAIN_2_80MV = const(0x0800) # Gain 2, 80mV Range
_CONFIG_GAIN_4_160MV = const(0x1000) # Gain 4, 160mV Range
_CONFIG_GAIN_8_320MV = const(0x1800) # Gain 8, 320mV Range
_CONFIG_BADCRES_MASK = const(0x0780) # Bus ADC Resolution Mask
_CONFIG_BADCRES_9BIT = const(0x0080) # 9-bit bus res = 0..511
_CONFIG_BADCRES_10BIT = const(0x0100) # 10-bit bus res = 0..1023
_CONFIG_BADCRES_11BIT = const(0x0200) # 11-bit bus res = 0..2047
_CONFIG_BADCRES_12BIT = const(0x0400) # 12-bit bus res = 0..4097
_CONFIG_SADCRES_MASK = const(0x0078) # Shunt ADC Res. & Avg. Mask
_CONFIG_SADCRES_9BIT_1S_84US = const(0x0000) # 1 x 9-bit shunt sample
_CONFIG_SADCRES_10BIT_1S_148US = const(0x0008) # 1 x 10-bit shunt sample
_CONFIG_SADCRES_11BIT_1S_276US = const(0x0010) # 1 x 11-bit shunt sample
_CONFIG_SADCRES_12BIT_1S_532US = const(0x0018) # 1 x 12-bit shunt sample
_CONFIG_SADCRES_12BIT_2S_1060US = const(0x0048) # 2 x 12-bit sample average
_CONFIG_SADCRES_12BIT_4S_2130US = const(0x0050) # 4 x 12-bit sample average
_CONFIG_SADCRES_12BIT_8S_4260US = const(0x0058) # 8 x 12-bit sample average
_CONFIG_SADCRES_12BIT_16S_8510US = const(0x0060) # 16 x 12-bit sample average
_CONFIG_SADCRES_12BIT_32S_17MS = const(0x0068) # 32 x 12-bit sample average
_CONFIG_SADCRES_12BIT_64S_34MS = const(0x0070) # 64 x 12-bit sample average
_CONFIG_SADCRES_12BIT_128S_69MS = const(0x0078) # 128 x 12-bit sample average
_CONFIG_MODE_MASK = const(0x0007) # Operating Mode Mask
_CONFIG_MODE_POWERDOWN = const(0x0000)
_CONFIG_MODE_SVOLT_TRIGGERED = const(0x0001)
_CONFIG_MODE_BVOLT_TRIGGERED = const(0x0002)
_CONFIG_MODE_SANDBVOLT_TRIGGERED = const(0x0003)
_CONFIG_MODE_ADCOFF = const(0x0004)
_CONFIG_MODE_SVOLT_CONTINUOUS = const(0x0005)
_CONFIG_MODE_BVOLT_CONTINUOUS = const(0x0006)
_CONFIG_MODE_SANDBVOLT_CONTINUOUS = const(0x0007)
# SHUNT VOLTAGE REGISTER (R)
_REG_SHUNTVOLTAGE = const(0x01)
# BUS VOLTAGE REGISTER (R)
_REG_BUSVOLTAGE = const(0x02)
# POWER REGISTER (R)
_REG_POWER = const(0x03)
# CURRENT REGISTER (R)
_REG_CURRENT = const(0x04)
# CALIBRATION REGISTER (R/W)
_REG_CALIBRATION = const(0x05)
# pylint: enable=bad-whitespace
def _to_signed(num):
if num > 0x7FFF:
num -= 0x10000
return num
class INA219:
"""Driver for the INA219 current sensor"""
def __init__(self, i2c_device: I2C, addr: int = 0x40):
self.i2c_device = i2c_device
self.i2c_addr = addr
self.buf = bytearray(2)
# Multiplier in mA used to determine current from raw reading
self._current_lsb = 0
# Multiplier in W used to determine power from raw reading
self._power_lsb = 0
# Set chip to known config values to start
self._cal_value = 4096
self.set_calibration_32V_2A()
def _write_register(self, reg, value):
self.buf[0] = (value >> 8) & 0xFF
self.buf[1] = value & 0xFF
self.i2c_device.writeto_mem(self.i2c_addr, reg, self.buf)
def _read_register(self, reg):
self.i2c_device.readfrom_mem_into(self.i2c_addr, reg & 0xff, self.buf)
value = (self.buf[0] << 8) | (self.buf[1])
return value
@property
def shunt_voltage(self):
"""The shunt voltage (between V+ and V-) in Volts (so +-.327V)"""
value = _to_signed(self._read_register(_REG_SHUNTVOLTAGE))
# The least signficant bit is 10uV which is 0.00001 volts
return value * 0.00001
@property
def bus_voltage(self):
"""The bus voltage (between V- and GND) in Volts"""
raw_voltage = self._read_register(_REG_BUSVOLTAGE)
# Shift to the right 3 to drop CNVR and OVF and multiply by LSB
# Each least signficant bit is 4mV
voltage_mv = _to_signed(raw_voltage >> 3) * 4
return voltage_mv * 0.001
@property
def current(self):
"""The current through the shunt resistor in milliamps."""
# Sometimes a sharp load will reset the INA219, which will
# reset the cal register, meaning CURRENT and POWER will
# not be available ... athis by always setting a cal
# value even if it's an unfortunate extra step
self._write_register(_REG_CALIBRATION, self._cal_value)
# Now we can safely read the CURRENT register!
raw_current = _to_signed(self._read_register(_REG_CURRENT))
return raw_current * self._current_lsb
def set_calibration_32V_2A(self): # pylint: disable=invalid-name
"""Configures to INA219 to be able to measure up to 32V and 2A
of current. Counter overflow occurs at 3.2A.
..note :: These calculations assume a 0.1 shunt ohm resistor"""
# By default we use a pretty huge range for the input voltage,
# which probably isn't the most appropriate choice for system
# that don't use a lot of power. But all of the calculations
# are shown below if you want to change the settings. You will
# also need to change any relevant register settings, such as
# setting the VBUS_MAX to 16V instead of 32V, etc.
# VBUS_MAX = 32V (Assumes 32V, can also be set to 16V)
# VSHUNT_MAX = 0.32 (Assumes Gain 8, 320mV, can also be
# 0.16, 0.08, 0.04)
# RSHUNT = 0.1 (Resistor value in ohms)
# 1. Determine max possible current
# MaxPossible_I = VSHUNT_MAX / RSHUNT
# MaxPossible_I = 3.2A
# 2. Determine max expected current
# MaxExpected_I = 2.0A
# 3. Calculate possible range of LSBs (Min = 15-bit, Max = 12-bit)
# MinimumLSB = MaxExpected_I/32767
# MinimumLSB = 0.000061 (61uA per bit)
# MaximumLSB = MaxExpected_I/4096
# MaximumLSB = 0,000488 (488uA per bit)
# 4. Choose an LSB between the min and max values
# (Preferrably a roundish number close to MinLSB)
# CurrentLSB = 0.0001 (100uA per bit)
self._current_lsb = .1 # Current LSB = 100uA per bit
# 5. Compute the calibration register
# Cal = trunc (0.04096 / (Current_LSB * RSHUNT))
# Cal = 4096 (0x1000)
self._cal_value = 4096
# 6. Calculate the power LSB
# PowerLSB = 20 * CurrentLSB
# PowerLSB = 0.002 (2mW per bit)
self._power_lsb = .002 # Power LSB = 2mW per bit
# 7. Compute the maximum current and shunt voltage values before
# overflow
#
# Max_Current = Current_LSB * 32767
# Max_Current = 3.2767A before overflow
#
# If Max_Current > Max_Possible_I then
# Max_Current_Before_Overflow = MaxPossible_I
# Else
# Max_Current_Before_Overflow = Max_Current
# End If
#
# Max_ShuntVoltage = Max_Current_Before_Overflow * RSHUNT
# Max_ShuntVoltage = 0.32V
#
# If Max_ShuntVoltage >= VSHUNT_MAX
# Max_ShuntVoltage_Before_Overflow = VSHUNT_MAX
# Else
# Max_ShuntVoltage_Before_Overflow = Max_ShuntVoltage
# End If
# 8. Compute the Maximum Power
# MaximumPower = Max_Current_Before_Overflow * VBUS_MAX
# MaximumPower = 3.2 * 32V
# MaximumPower = 102.4W
# Set Calibration register to 'Cal' calculated above
self._write_register(_REG_CALIBRATION, self._cal_value)
# Set Config register to take into account the settings above
config = (_CONFIG_BVOLTAGERANGE_32V |
_CONFIG_GAIN_8_320MV |
_CONFIG_BADCRES_12BIT |
_CONFIG_SADCRES_12BIT_1S_532US |
_CONFIG_MODE_SANDBVOLT_CONTINUOUS)
self._write_register(_REG_CONFIG, config)
def set_calibration_32V_1A(self): # pylint: disable=invalid-name
"""Configures to INA219 to be able to measure up to 32V and 1A of
current. Counter overflow occurs at 1.3A.
.. note:: These calculations assume a 0.1 ohm shunt resistor."""
# By default we use a pretty huge range for the input voltage,
# which probably isn't the most appropriate choice for system
# that don't use a lot of power. But all of the calculations
# are shown below if you want to change the settings. You will
# also need to change any relevant register settings, such as
# setting the VBUS_MAX to 16V instead of 32V, etc.
# VBUS_MAX = 32V (Assumes 32V, can also be set to 16V)
# VSHUNT_MAX = 0.32 (Assumes Gain 8, 320mV, can also be
# 0.16, 0.08, 0.04)
# RSHUNT = 0.1 (Resistor value in ohms)
# 1. Determine max possible current
# MaxPossible_I = VSHUNT_MAX / RSHUNT
# MaxPossible_I = 3.2A
# 2. Determine max expected current
# MaxExpected_I = 1.0A
# 3. Calculate possible range of LSBs (Min = 15-bit, Max = 12-bit)
# MinimumLSB = MaxExpected_I/32767
# MinimumLSB = 0.0000305 (30.5uA per bit)
# MaximumLSB = MaxExpected_I/4096
# MaximumLSB = 0.000244 (244uA per bit)
# 4. Choose an LSB between the min and max values
# (Preferrably a roundish number close to MinLSB)
# CurrentLSB = 0.0000400 (40uA per bit)
self._current_lsb = 0.04 # In milliamps
# 5. Compute the calibration register
# Cal = trunc (0.04096 / (Current_LSB * RSHUNT))
# Cal = 10240 (0x2800)
self._cal_value = 10240
# 6. Calculate the power LSB
# PowerLSB = 20 * CurrentLSB
# PowerLSB = 0.0008 (800uW per bit)
self._power_lsb = 0.0008
# 7. Compute the maximum current and shunt voltage values before
# overflow
#
# Max_Current = Current_LSB * 32767
# Max_Current = 1.31068A before overflow
#
# If Max_Current > Max_Possible_I then
# Max_Current_Before_Overflow = MaxPossible_I
# Else
# Max_Current_Before_Overflow = Max_Current
# End If
#
# ... In this case, we're good though since Max_Current is less than
# MaxPossible_I
#
# Max_ShuntVoltage = Max_Current_Before_Overflow * RSHUNT
# Max_ShuntVoltage = 0.131068V
#
# If Max_ShuntVoltage >= VSHUNT_MAX
# Max_ShuntVoltage_Before_Overflow = VSHUNT_MAX
# Else
# Max_ShuntVoltage_Before_Overflow = Max_ShuntVoltage
# End If
# 8. Compute the Maximum Power
# MaximumPower = Max_Current_Before_Overflow * VBUS_MAX
# MaximumPower = 1.31068 * 32V
# MaximumPower = 41.94176W
# Set Calibration register to 'Cal' calculated above
self._write_register(_REG_CALIBRATION, self._cal_value)
# Set Config register to take into account the settings above
config = (_CONFIG_BVOLTAGERANGE_32V |
_CONFIG_GAIN_8_320MV |
_CONFIG_BADCRES_12BIT |
_CONFIG_SADCRES_12BIT_1S_532US |
_CONFIG_MODE_SANDBVOLT_CONTINUOUS)
self._write_register(_REG_CONFIG, config)
def set_calibration_16V_400mA(self): # pylint: disable=invalid-name
"""Configures to INA219 to be able to measure up to 16V and 400mA of
current. Counter overflow occurs at 1.6A.
.. note:: These calculations assume a 0.1 ohm shunt resistor."""
# Calibration which uses the highest precision for
# current measurement (0.1mA), at the expense of
# only supporting 16V at 400mA max.
# VBUS_MAX = 16V
# VSHUNT_MAX = 0.04 (Assumes Gain 1, 40mV)
# RSHUNT = 0.1 (Resistor value in ohms)
# 1. Determine max possible current
# MaxPossible_I = VSHUNT_MAX / RSHUNT
# MaxPossible_I = 0.4A
# 2. Determine max expected current
# MaxExpected_I = 0.4A
# 3. Calculate possible range of LSBs (Min = 15-bit, Max = 12-bit)
# MinimumLSB = MaxExpected_I/32767
# MinimumLSB = 0.0000122 (12uA per bit)
# MaximumLSB = MaxExpected_I/4096
# MaximumLSB = 0.0000977 (98uA per bit)
# 4. Choose an LSB between the min and max values
# (Preferrably a roundish number close to MinLSB)
# CurrentLSB = 0.00005 (50uA per bit)
self._current_lsb = 0.05 # in milliamps
# 5. Compute the calibration register
# Cal = trunc (0.04096 / (Current_LSB * RSHUNT))
# Cal = 8192 (0x2000)
self._cal_value = 8192
# 6. Calculate the power LSB
# PowerLSB = 20 * CurrentLSB
# PowerLSB = 0.001 (1mW per bit)
self._power_lsb = 0.001
# 7. Compute the maximum current and shunt voltage values before
# overflow
#
# Max_Current = Current_LSB * 32767
# Max_Current = 1.63835A before overflow
#
# If Max_Current > Max_Possible_I then
# Max_Current_Before_Overflow = MaxPossible_I
# Else
# Max_Current_Before_Overflow = Max_Current
# End If
#
# Max_Current_Before_Overflow = MaxPossible_I
# Max_Current_Before_Overflow = 0.4
#
# Max_ShuntVoltage = Max_Current_Before_Overflow * RSHUNT
# Max_ShuntVoltage = 0.04V
#
# If Max_ShuntVoltage >= VSHUNT_MAX
# Max_ShuntVoltage_Before_Overflow = VSHUNT_MAX
# Else
# Max_ShuntVoltage_Before_Overflow = Max_ShuntVoltage
# End If
#
# Max_ShuntVoltage_Before_Overflow = VSHUNT_MAX
# Max_ShuntVoltage_Before_Overflow = 0.04V
# 8. Compute the Maximum Power
# MaximumPower = Max_Current_Before_Overflow * VBUS_MAX
# MaximumPower = 0.4 * 16V
# MaximumPower = 6.4W
# Set Calibration register to 'Cal' calculated above
self._write_register(_REG_CALIBRATION, self._cal_value)
# Set Config register to take into account the settings above
config = (_CONFIG_BVOLTAGERANGE_16V |
_CONFIG_GAIN_1_40MV |
_CONFIG_BADCRES_12BIT |
_CONFIG_SADCRES_12BIT_1S_532US |
_CONFIG_MODE_SANDBVOLT_CONTINUOUS)
self._write_register(_REG_CONFIG, config)
led_driver.py
from machine import Pin, SoftI2C
import ssd1308
from time import sleep
# Настройка дисплея
i2c = SoftI2C(scl=Pin(22), sda=Pin(21))
oled = ssd1308.SSD1306_I2C(128, 32, i2c, addr=0x3C)
def print_like_console(text, x=0, y=0, delay=0.05):
oled.fill(0)
for i in range(len(text)):
oled.text(text[i], x + i * 6, y) # 6 пикселей на символ
oled.show()
sleep(delay)
def print_multiline_console(text_lines, delay=0.03):
oled.fill(0)
line_height = 9 # чуть больше 8, чтобы строки не слипались
for idx, line in enumerate(text_lines):
oled.text(line, 0, idx * line_height)
oled.show()
sleep(delay)
#from led_driver import print_like_console , print_multiline_console
#print_like_console('TEST', x=0, y=0, delay=0.05)
lines = ['LINE 0' ,
f'LINE 1' ,
f'LINE 2',
f"LINE 3" ]
#print_multiline_console(lines, 0.05)
ssd1308.py
# MicroPython SSD1306 OLED driver, I2C and SPI interfaces created by Adafruit
import time
import framebuf
# register definitions
SET_CONTRAST = const(0x81)
SET_ENTIRE_ON = const(0xa4)
SET_NORM_INV = const(0xa6)
SET_DISP = const(0xae)
SET_MEM_ADDR = const(0x20)
SET_COL_ADDR = const(0x21)
SET_PAGE_ADDR = const(0x22)
SET_DISP_START_LINE = const(0x40)
SET_SEG_REMAP = const(0xa0)
SET_MUX_RATIO = const(0xa8)
SET_COM_OUT_DIR = const(0xc0)
SET_DISP_OFFSET = const(0xd3)
SET_COM_PIN_CFG = const(0xda)
SET_DISP_CLK_DIV = const(0xd5)
SET_PRECHARGE = const(0xd9)
SET_VCOM_DESEL = const(0xdb)
SET_CHARGE_PUMP = const(0x8d)
class SSD1306:
def __init__(self, width, height, external_vcc):
self.width = width
self.height = height
self.external_vcc = external_vcc
self.pages = self.height // 8
# Note the subclass must initialize self.framebuf to a framebuffer.
# This is necessary because the underlying data buffer is different
# between I2C and SPI implementations (I2C needs an extra byte).
self.poweron()
self.init_display()
def init_display(self):
for cmd in (
SET_DISP | 0x00, # off
# address setting
SET_MEM_ADDR, 0x00, # horizontal
# resolution and layout
SET_DISP_START_LINE | 0x00,
SET_SEG_REMAP | 0x01, # column addr 127 mapped to SEG0
SET_MUX_RATIO, self.height - 1,
SET_COM_OUT_DIR | 0x08, # scan from COM[N] to COM0
SET_DISP_OFFSET, 0x00,
SET_COM_PIN_CFG, 0x02 if self.height == 32 else 0x12,
# timing and driving scheme
SET_DISP_CLK_DIV, 0x80,
SET_PRECHARGE, 0x22 if self.external_vcc else 0xf1,
SET_VCOM_DESEL, 0x30, # 0.83*Vcc
# display
SET_CONTRAST, 0xff, # maximum
SET_ENTIRE_ON, # output follows RAM contents
SET_NORM_INV, # not inverted
# charge pump
SET_CHARGE_PUMP, 0x10 if self.external_vcc else 0x14,
SET_DISP | 0x01): # on
self.write_cmd(cmd)
self.fill(0)
self.show()
def poweroff(self):
self.write_cmd(SET_DISP | 0x00)
def contrast(self, contrast):
self.write_cmd(SET_CONTRAST)
self.write_cmd(contrast)
def invert(self, invert):
self.write_cmd(SET_NORM_INV | (invert & 1))
def show(self):
x0 = 0
x1 = self.width - 1
if self.width == 64:
# displays with width of 64 pixels are shifted by 32
x0 += 32
x1 += 32
self.write_cmd(SET_COL_ADDR)
self.write_cmd(x0)
self.write_cmd(x1)
self.write_cmd(SET_PAGE_ADDR)
self.write_cmd(0)
self.write_cmd(self.pages - 1)
self.write_framebuf()
def fill(self, col):
self.framebuf.fill(col)
def pixel(self, x, y, col):
self.framebuf.pixel(x, y, col)
def scroll(self, dx, dy):
self.framebuf.scroll(dx, dy)
def text(self, string, x, y, col=1):
self.framebuf.text(string, x, y, col)
class SSD1306_I2C(SSD1306):
def __init__(self, width, height, i2c, addr=0x3c, external_vcc=False):
self.i2c = i2c
self.addr = addr
self.temp = bytearray(2)
# Add an extra byte to the data buffer to hold an I2C data/command byte
# to use hardware-compatible I2C transactions. A memoryview of the
# buffer is used to mask this byte from the framebuffer operations
# (without a major memory hit as memoryview doesn't copy to a separate
# buffer).
self.buffer = bytearray(((height // 8) * width) + 1)
self.buffer[0] = 0x40 # Set first byte of data buffer to Co=0, D/C=1
self.framebuf = framebuf.FrameBuffer1(memoryview(self.buffer)[1:], width, height)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.temp[0] = 0x80 # Co=1, D/C#=0
self.temp[1] = cmd
self.i2c.writeto(self.addr, self.temp)
def write_framebuf(self):
# Blast out the frame buffer using a single I2C transaction to support
# hardware I2C interfaces.
self.i2c.writeto(self.addr, self.buffer)
def poweron(self):
pass
class SSD1306_SPI(SSD1306):
def __init__(self, width, height, spi, dc, res, cs, external_vcc=False):
self.rate = 10 * 1024 * 1024
dc.init(dc.OUT, value=0)
res.init(res.OUT, value=0)
cs.init(cs.OUT, value=1)
self.spi = spi
self.dc = dc
self.res = res
self.cs = cs
self.buffer = bytearray((height // 8) * width)
self.framebuf = framebuf.FrameBuffer1(self.buffer, width, height)
super().__init__(width, height, external_vcc)
def write_cmd(self, cmd):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs.high()
self.dc.low()
self.cs.low()
self.spi.write(bytearray([cmd]))
self.cs.high()
def write_framebuf(self):
self.spi.init(baudrate=self.rate, polarity=0, phase=0)
self.cs.high()
self.dc.high()
self.cs.low()
self.spi.write(self.buffer)
self.cs.high()
def poweron(self):
self.res.high()
time.sleep_ms(1)
self.res.low()
time.sleep_ms(10)
self.res.high()



Комментарии
Отправить комментарий